\(\int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\) [271]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 37 \[ \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d} \]

[Out]

-2*arctanh(sin(d*x+c)/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2))/d

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2854, 213} \[ \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d} \]

[In]

Int[Sqrt[1 - Cos[c + d*x]]/Sqrt[Cos[c + d*x]],x]

[Out]

(-2*ArcTanh[Sin[c + d*x]/(Sqrt[1 - Cos[c + d*x]]*Sqrt[Cos[c + d*x]])])/d

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2854

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*(b/f), Subst[Int[1/(b + d*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d} \\ & = -\frac {2 \text {arctanh}\left (\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.17 (sec) , antiderivative size = 124, normalized size of antiderivative = 3.35 \[ \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=-\frac {e^{\frac {1}{2} i (c+d x)} \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (\text {arcsinh}\left (e^{i (c+d x)}\right )+\text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \sqrt {1-\cos (c+d x)} \csc \left (\frac {1}{2} (c+d x)\right )}{\sqrt {2} d \sqrt {1+e^{2 i (c+d x)}}} \]

[In]

Integrate[Sqrt[1 - Cos[c + d*x]]/Sqrt[Cos[c + d*x]],x]

[Out]

-((E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(ArcSinh[E^(I*(c + d*x))] + ArcTanh[Sqr
t[1 + E^((2*I)*(c + d*x))]])*Sqrt[1 - Cos[c + d*x]]*Csc[(c + d*x)/2])/(Sqrt[2]*d*Sqrt[1 + E^((2*I)*(c + d*x))]
))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(80\) vs. \(2(33)=66\).

Time = 4.75 (sec) , antiderivative size = 81, normalized size of antiderivative = 2.19

method result size
default \(-\frac {\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {-2 \cos \left (d x +c \right )+2}\, \operatorname {arctanh}\left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \left (\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{d \sqrt {\cos \left (d x +c \right )}}\) \(81\)

[In]

int((1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(-2*cos(d*x+c)+2)^(1/2)*arctanh((cos(d*x+c)/(1+cos(d*x+c)))^(1/
2))/cos(d*x+c)^(1/2)*(cot(d*x+c)+csc(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.73 \[ \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\frac {\log \left (-\frac {2 \, {\left (\cos \left (d x + c\right ) + 1\right )} \sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} - {\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{\sin \left (d x + c\right )}\right )}{d} \]

[In]

integrate((1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

log(-(2*(cos(d*x + c) + 1)*sqrt(-cos(d*x + c) + 1)*sqrt(cos(d*x + c)) - (2*cos(d*x + c) + 1)*sin(d*x + c))/sin
(d*x + c))/d

Sympy [F]

\[ \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {1 - \cos {\left (c + d x \right )}}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((1-cos(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(1 - cos(c + d*x))/sqrt(cos(c + d*x)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 221 vs. \(2 (33) = 66\).

Time = 0.36 (sec) , antiderivative size = 221, normalized size of antiderivative = 5.97 \[ \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \, \operatorname {arsinh}\left (1\right ) + \log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} + \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2}\right )} + 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (d x + c\right ) \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )}\right )}{2 \, d} \]

[In]

integrate((1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/2*(2*arcsinh(1) + log(cos(d*x + c)^2 + sin(d*x + c)^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos
(2*d*x + 2*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c) + 1))^2) + 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(c
os(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1)))))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 119 vs. \(2 (33) = 66\).

Time = 0.60 (sec) , antiderivative size = 119, normalized size of antiderivative = 3.22 \[ \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 2 \, \sqrt {2} - \sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1} + 1\right )}}{{\left | -2 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 4 \, \sqrt {2} + 2 \, \sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1} - 2 \right |}}\right ) \mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} \]

[In]

integrate((1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

2*log(2*(tan(1/4*d*x + 1/4*c)^2 + 2*sqrt(2) - sqrt(tan(1/4*d*x + 1/4*c)^4 - 6*tan(1/4*d*x + 1/4*c)^2 + 1) + 1)
/abs(-2*tan(1/4*d*x + 1/4*c)^2 + 4*sqrt(2) + 2*sqrt(tan(1/4*d*x + 1/4*c)^4 - 6*tan(1/4*d*x + 1/4*c)^2 + 1) - 2
))*sgn(sin(1/2*d*x + 1/2*c))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {1-\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((1 - cos(c + d*x))^(1/2)/cos(c + d*x)^(1/2),x)

[Out]

int((1 - cos(c + d*x))^(1/2)/cos(c + d*x)^(1/2), x)